A Novel Algorithm of Surface Eliminating in Undersurface Optoacoustic Imaging
نویسنده
چکیده
This paper analyzes the task of optoacoustic imaging of the objects located under the surface covering them. In this paper, we suggest the algorithm of the surface eliminating based on the fact that the intensity of the image as a function of the spatial point should change slowly inside the local objects, and will suffer a discontinuity of the spatial gradients on their boundaries. The algorithm forms the 2-dimensional curves along which the discontinuity of the signal derivatives is detected. Then, the algorithm divides the signal space into the areas along these curves. The signals inside the areas with the maximum level of the signal amplitudes and the maximal gradient absolute values on their edges are put equal to zero. The rest of the signals are used for the image restoration. This method permits to reconstruct the picture of the surface boundaries with a higher contrast than that of the surface detection technique based on the maximums of the received signals. This algorithm does not require any prior knowledge of the signals’ statistics inside and outside the local objects. It may be used for reconstructing any images with the help of the signals representing the integral over the object’s volume. Simulation and real data are also provided to validate the proposed method.
منابع مشابه
Optoacoustic imaging based on the interferometric measurement of surface displacement.
We present images of tissue phantoms and chicken chorio-allantoic membrane vasculature using a novel optoacoustic tomography technique based on the time-resolved interferometric measurement of laser-induced thermoelastic expansion. Our imaging system is based on a modified Mach-Zehnder interferometer that provides surface displacement measurements with a temporal resolution of 4 ns and a displa...
متن کاملFluence compensation in raster-scan optoacoustic angiography
Modern optical imaging techniques demonstrate significant potential for high resolution in vivo angiography. Optoacoustic angiography benefits from higher imaging depth as compared to pure optical modalities. However, strong attenuation of optoacoustic signal with depth provides serious challenges for adequate 3D vessel net mapping, and proper compensation for fluence distribution within biotis...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملOptoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification
This paper comprehensively reviews the emerging topic of optoacoustic imaging from the image reconstruction and quantification perspective. Optoacoustic imaging combines highly attractive features, including rich contrast and high versatility in sensing diverse biological targets, excellent spatial resolution not compromised by light scattering, and relatively low cost of implementation. Yet, l...
متن کاملWeighted model-based optoacoustic reconstruction in acoustic scattering media.
Model-based optoacoustic inversion methods are capable of eliminating image artefacts associated with the widely adopted back-projection reconstruction algorithms. Yet, significant image artefacts might also occur due to reflections and scattering of optoacoustically-induced waves from strongly acoustically-mismatched areas in tissues. Herein, we modify the model-based reconstruction methodolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004